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The physical characteristics of two-dimensional classical ferro- and antiferro- 
magnets have been calculated in the whole temperature range by an analytical 
approach based on the expansion in powers of I/D, where D is the number of spin 
components. This approach works rather well since it yields exact results for 
antiferromagnetic susceptibility and specific heat at T = 0 already in the first order 
in lID and it is consistent with HTSE at high temperatures. For the quantities 
singular at T= 0, such as ferromagnetic susceptibility and correlation length, the 
I/D expansion supports their general-D functional form in the low-temperature 
range obtained by Fukugita and Oyanagi. The critical index q calculated in the 
first order in 1/D proves to be temperature dependent: q = 20~(reD) (0 = T/Tt M~,  
Tc~M~=Jo/D, Jo is the zero Fourier component of the exchange interaction). 

KEY WORDS: Low-dimensional magnets; spherical model; fluctuations; I/D 
(l/n) expansion; correlation function. 

1. INTRODUCTION 

The  physics of  l ow-d imens iona l  magne t s  has a t t r ac ted  the a t t en t ion  of  

researchers  for several  decades  (see, e.g., ref. 1). La te ly  this interest  has 

increased in c o n n e c t i o n  with the h i g h - t e m p e r a t u r e  s u p e r c o n d u c t i v i t y J  2~ 

F o r  layered  magne t i c  sys tems accura te  quan t i t a t i ve  results on  the high-  
t empe ra tu r e  side can  be ob t a ined  with the help  of  the h i g h - t e m p e r a t u r e  series 
expans ion  ( H T S E ) .  131 F o r  classical  mode l s  the longest  series for in ternal  

energy and  suscept ibi l i ty  were ob ta ined  in refs. 4 and  5. A c o m p r e h e n s i v e  

review on the app l i ca t ion  of  the H T S E  to different lat t ice mode l s  can  be 

found in ref. 6. 
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The HTSE approach works well for temperatures until below the 
antiferromagnetic susceptibility maximum. Complementary to this, some 
theories were developed primarily for the low-temperature range. In ref. 7 
the renormalization group analysis was applied to the investigation of the 
long-wavelength, low-temperature behavior of the quantum antiferro- 
magnet as described by the quantum nonlinear a-model. A variational 
approach to the low-dimensional Heisenberg magnets without long-range 
order ("modified spin wave theory") was proposed by Takahashi. 18~ This 
approach proves to be rather successful at T ~ J  (J is the exchange 
integral), as is shown by the comparison with the exact solution for the 
one-dimensional classical Heisenberg model 14~ and with the data of Monte 
Carlo simulations and finite-size calculations for the square-lattice quan- 
tum Heisenberg models. However, this variational approach breaks down 
at T > J  and, on the other hand, it is not a rigorous expansion in powers 
of T/J in the region T,~ J. Another drawback of the Takahashi theory is 
the impossibility of the generalization for the case of nonzero magnetic 
fields, since the condition of zero magnetization at H = 0 was enforced by 
hand and cannot be relaxed. One more approach to the low-dimensional 
Heisenberg magnets, the so-called "Schwinger boson mean field theory ''lt~ 
based on functional methods, yields results almost equivalent to those of 
ref. 8, but with the proper factor 2/3 in the zero-temperature susceptibility 
of the Heisenberg antiferromagnet lacking. 

In this article an analytical approach is proposed giving reasonable 
results for low-dimensional classical ferro- and antiferromagnets at 
arbitrary temperatures. The consideration sheds some light on quantum 
systems as well, since their physics in the undoped case is to a significant 
extent similar to that of classical ones/2~ The idea of the method is the 
expansion in powers of I/D for the model of D-component classical "spins" 
on a lattice introduced by Stanley ~ (see also ref. 27): 

o f '=  - H  ~ m i -  �89 ~' J//mim/, I m l = l  (1.1) 
i i . j  

In the limit D--* ~ this model is equivalent to the spherical model ~z~ and 
exactly soluble. In our earlier works ~13~ a kind of diagram technique for 
classical spin systems was developed. This diagram technique proves to be 
very convenient, in particular, for the calculation of the high-temperature 
series. In ref. 13 the class of diagrams was located which survives in the 
limit D--, ~ and recovers the exact solution for the spherical model. For 
three-dimensional classical Heisenberg and x-y  models this class of 
diagrams (the 1/z or self-consistent Gaussian approximation, SCGA) 
results in an equation of state having an accuracy about 1% in the whole 
range of temperatures and magnetic fields, including the determination of 
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the phase transition temperature T,.. It was shown that all other contribu- 
tions to the physical quantities of a magnetic system contain explicitly the 
powers of 1/D and can be classified by this parameter. This indicates a 
possibility of a regular 1/D expansion in the framework of the diagram 
technique for classical spin systems. Another version of this expansion was 
used earlier in refs. 14 and 15. 

Actually, the model (1.1) is a particular case of the more general 
model ~'3~ of D-component "spins" with only n ~< D components coupled by 
the interaction J. It is clear that just n can be considered as the number of 
the order parameter components determining the universality class of the 
system in the critical region. The critical indices for three-dimensional 
phase transitions obtained with the help of the 1/n expansion (see, e.g., 
ref. 16) are clearly independent of D. On the contrary, the nonuniversai 
quantities depend on both D and n. Here only the case n = D  will be 
considered; the model with n ~< D is left for a subsequent consideration. 

There are physical reasons by which the 1/D expansion for one- and 
two-dimensional classical Heisenberg model turns out to be much more 
efficient than one could expect considering the numerical value of 1/D for 
D = 3, and than it actually is for the calculation of the critical indices for 
three-dimensional systems. The point is that already the first-order 
approximation in I/D gives the exact results for antiferromagnetic suscep- 
tibility, internal energy, and specific heat at T ~  0. Indeed, at T ~  0 there 
is a strong short-range order in the system, and each of the (D - 1 ) suscep- 
tibilities of an antiferromagnet transverse with respect to the local spin 
configuration tends to the classical transverse value 1/(2,/o) (Jo=zJ, 
z is the number of nearest neighbors), whereas the longitudinal one 
tends to zero. 2 Since there is no long-range order, the susceptibility of a 
sample is given by the average over local spin orientations, which yields 
Z(0) = l/(2Jo). (1 - I/D). For the Heisenberg model (D = 3) the D-depend- 
ent factor makes up exactly the famous number 2/3. The internal energy of 
a magnet per spin takes on its saturated value U(0)=  -Jo/2 at T =  0--this  
result is independent of D and can be used for checking calculations in 
each order in I/D. Then, it can be argued that the specific heat at T ~  0 
is given by C(O)=~U/OTIr=o=(D - 1)/2 (only D -  1 spin components 
transverse to the local molecular field contribute to the specific heat). On 
the other hand, on the high-temperature side the 1/D expansion recovers 
the leading order terms of the HTSE. Thus, it is plausible that this 
approximate solfition, being well behaved on both sides of the temperature 

2 These arguments apply to bipartite lattices, such as the square lattice with the nearest- 
neighbor interaction, where the short-range order forms two "sublattices" with opposite 
magnetizations. This case is only considered throughout the paper. 
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interval, cannot deviate substantially from the exact one in the inter- 
mediate-temperature range as well. 

Here the 1/D expansion for low-dimensional magnets is developed up 
to the first order in 1/D. The remainder of the article is organized as follows. 
In Section 2 the applicability of the I/D expansion is checked for a "toy" 
example of the classical linear chain magnet, for which the exact solution 
is available for arbitrary D. (17) In Section 3 the diagram technique for 
classical spin systems is described. In Section 4 the self-consistent Gaussian 
approximation for systems without long-range order is formulated and the 
expansion of the SCGA results to the first order in lID is carried out. 
In Section 5 the D dependence of diagrams is analyzed and the additional 
diagrams of the leading order 1/D are found. In Section 6 the analytical 
expressions of the 1/D approximation are put into more convenient form 
and the low-temperature expansions for the internal energy and antiferro- 
magnetic susceptibility of two-dimensional classical spin systems in the first 
order in lID are produced. In Section 7 we investigate the low-temperature 
behavior of ferromagnetic susceptibility and spin-spin correlation function. 

2. O N E - D I M E N S I O N A L  M A G N E T S :  A " T O Y "  E X A M P L E  

The arguments in the Introduction apply equally well to one- and 
two-dimensional systems. It is convenient to check their applicability for 
a particular case of the linear chain magnet with the nearest neighbor inter- 
action for which at H = 0  the exact solution is availablC tTI and the 1/D 
expansion can be obtained without any diagram technique. In particular, 
the normalized internal energy 0 = U/U(O) (which for systems with n.n. 
interactions coincides with the nearest neighbor correlation function 
S~= <mom~>) is given by 

U= B(J/T); B(r = Io/2(~)/Io/2- ,(~) (2.1) 

where B is the generalized Langevin function, and I,.(~) is the modified 
Bessel function. The spin-spin correlation function Sr reads ~tT~ 

S, = <m0mr> = [B(J/T)] 'rl (2.2) 

where the interatomic spacing is set to unity: a = 1. In the Fourier rep- 
resentation 

1 -- B 2 
Sk = ~ exp(ikr) Sr = 1 + B 2 - 2B)~k (2.3) 

f 
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where 2k =-JkJJo = cos(k), Jo = z J  is the zero Fourier component of the 
exchange interaction, and z = 2 is the number of nearest neighbors. The 
wavevector-dependent susceptibility of a ferromagnet is given by 

1 1 
Xk = ~ ~ exp(ikr) (m~rn~) = ~ Sk (2.4) 

r 

and the antiferromagnetic susceptibility g~ v can be expressed through that 
of a ferromagnet: g~v=Xb_ k, where b is the inverse lattice vector (for 
the linear chain b = n ) .  Since 2o= 1 and 2b= -1 ,  for the homogeneous 
susceptibilities with the use of (2.3) and (2.4) one gets 

1 I + B  1 1 - B  
Zo = TD 1 - B ;  X'~v- (2.5) T D I + B  

The generalized Langevin function B(r in the above equations 
simplifies for small and large arguments, for D odd and in the case D >> 1. 
In the region x = 2~/D ~> 1 

B ( ~ ) ~ I  D - 1  ( D - 1 ) ( D - 3 ) ( D - 1 ) ( D - 3 ) + . . .  (2.6) 
2~ I- 8~ 2 ~- 8~ 3 

[for D = 1 or D = 3 the exponentially small corrections to (2.6) should be 
taken into account]. For x<~ 1 

~3 2~s 

B(r D DZ(D+ 2) + D3(D+ 2 ) (D+4)  ... (2.7) 

In the case of large D in the first order in I/D 

l X X 

B ( r  ""; f ( x ) -  1 +(1 +x2) ~p- (2.8) 

Finally, for D = 1, 3 the function B takes on the well-known forms 

~ t a n h ( ~ ) ,  D = 1 
B(~) = [coth(~) - l / l ,  O = 3 

(2.9) 

Dealing with the D-component vector model described by the 
Hamiltonian (1.1), it is convenient to choose the mean-field phase 
transition temperature T~cMv'r~= Jo/D as the energy scale. In terms of the 
dimensionless temperature variable 0 = T/T~. Mvr~ [~=D/(20)]  the low- 
temperature expansions of internal energy (2.1) and dimensionless anti- 

822 74 1-2-19 
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ferromagnetic susceptibility 2Aov--JoX~ v of the linear chain model are as 
follows: 

(2.10) 

and 

1 2 

It can be seen from (2.10) and (2.11) that, indeed, in the one-dimensional 
case specific heat and antiferromagnetic susceptibility at T---, 0 are exact in 
the first order in I/D, and, generally, their nth temperature derivatives at 
T--*0 are exact in the (n+  l)th order in 1/D. At high temperatures (0~> 1) 
with the help of (2.7) and (2.5) one gets for energy 

1 D 1 D 2 1 

0_~20 D+2803+(D+2)(D+4)I60S+... (2.12) 

and for the spin-spin correlation function So = 020 

1 1 1 1 D - 2  1 
So ~ 1 + ~ + ~-~'5 + ~--'+ 2 203 D + 2 8 0 4  

3D - 4 1 
- ( D + 2 ) ( D + 4 )  805 + " '  (2.13) 

[in the antiferromagnetic case the signs at the odd powers of 0 in (2.13) are 
reversed]. It is seen from (2.12) and (2.13) that at high temperatures the 
lID expansion correctly reproduces the leading term of the energy and the 
three leading terms of the susceptibility. The general recurrence relations 
for the coefficients in the formulas (2.12) and (2.13) can be found in ref. 17. 

The temperature dependences of internal energy (2.1) and antiferro- 
magnetic susceptibility (2.5) for the classical Heisenberg model ( D = 3 )  
together with the first-order approximation in I/D obtained with the help 
of (2.8) are represented below in Figs. 4 and 5. It is seen that, as 
was argued above, the accuracy of the I/D expansion is good enough, and 
that the latter is a substantial improvement over the zeroth order in lID 
(spherical) approximation. As could be expected, for internal energy the 
accuracy is higher, and the two curves are almost indistinguishable. As we 
will see below, the situation is qualitatively the same for the square-lattice 
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ferro- and antiferromagnets, where the exact solution is unknown and the 
diagram technique developed in ref. 13 is to be applied. This diagram 
technique is described in detail in the next section. 

3. THE D I A G R A M  TECHNIQUE FOR CLASSICAL SPIN 
SYSTEMS 

The diagrammatic representation of the thermal average of any quan- 
tity ~r characterizing a classical spin system (say, ~ r  i , -  ~ ct= 1, 2 ..... D) 
can be obtained by expanding the expression 

( d ) - - ~  I-[ d m j d e x p ( - f l o ' f ) ;  Imj l= l  (3.1) 
]=1 

(fl = 1/T and N is the number of spins in the lattice) in powers of the inter- 
action part Vi.t of the Hamiltonian (1). The one-site averages of the spin 
components with the "bare" hamiltonian o~o are determined by the 
derivatives of the "bare" partition function ~e o, 

~o(~ ) = const �9 r - to/2 - l)io/2 _ 1 (~) (3.2) 

( ~ = l ~ l , ~ = f l H )  with respect to the appropriate components ~ .  In the 
diagram technique the main role is played by the cumulant averages, the 
"bare" values of which are given by 

O"A(~) ,, cure (3.3) ( m ~ m  ~: . . .m )o - A~,~: .... . (~ ) -0~ ,  

where A(~)= In ~o(~). In particular, 

A,(~) = Bo(~) ~, --- B(r ~ /~  

A,a(~,) = Bo(~) 5,p + B~(~) ~,,r (3.4) 

A :,t1~,6(~) = BI �9 3~(6~,t~6~,a) + B2" 6~i~(~, ~/16~,6) Jr B3~a~lt~ 6 

where 

B.(O = \~ ~ j  ~ (3.5) 

B(~) is given by (2.1), 6~  is the component Kronecker symbol, and ~ is 
the symmetrization operator. In the limit ~ ~ 0 the quantities B,, tend to 
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the constants determined by the expansion (2.7), so in (3.4) only the first 
terms of even-component cumulants survive. 

The usual (noncumulant) averages, including the different-site ones, 
are expressed through the cumulants 

<m~m~ >o = A~t~6u + A~Ap (3.6) 

(rn~m~m~ >o = A,~f~k + A~A,~6o.+ Ae;,A,~jk + A~,,A~gk~ + A~At~A ~ 

etc., where 6 0 and 6~  are the site Kronecker symbols. In the graphical 
language the decomposition (3.6) corresponds to all possible groupings of 
small circles (spin components) into oval blocks (cumulant averages). The 
circles coming from Vin t (the "inner" circles) are connected pairwise by the 
wavy interaction lines, and the summation over their coordinates and com- 
ponent indices is carried out in diagram expressions. One should not take 
into account disconnected diagrams I-those containing disconnected parts 
with no "outer" circles coming from ~r in (3.1)], since these diagrams are 
compensated for by the expansion of the partition function ~ in (3.1). The 
consideration of numerical factors shows that each diagram contains the 
factor l/n s, where n.,. is the number of the symmetry group elements of a 
diagram (the symmetry operations do not concern outer circles). For prac- 
tical calculations it is more convenient to use the Fourier representation 
and calculate integrals over the Brillouin zone rather than lattice sums. 
As the lattice sums are subject to the constraint that the coordinates of the 
circles belonging to the same block coincide with each other [see (3.6)], in 
the Fourier representation the sum of wavevectors coming to any block 
along interaction lines is zero. 

The diagram technique for classical spins is a generalization of the 
"longitudinal part" of the spin operator diagram technique ~ls'~91 and 
reduces to it for the Ising model without transverse field. In this case 
A:= B, A=== B', A=::= B", etc. For the classical Heisenberg model the 
present diagram technique proves to be much more efficient than the spin 
operator diagram technique, since it takes advantage of classical properties 
of spin vectors in the explicit form. An earlier approach close to the present 
one is the linked cluster expansion. 12~ 

To illustrate the rules of the diagram technique for classical spin 
systems, let us calculate a few leading order terms of the HTSE for the 
energy of a ferromagnet. The energy due to one spin U is given by the 
average of the Hamiltonian (1), in which the summation over one of two 
indices is "frozen." The contributions to U up to the order 1/T 3 are given 
by the diagrams represented in Fig. 1, where the interaction line coming 
from the Hamiltonian (1) (the outer interaction line) not participating in 
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Fig. 1. 

4 
5 

The diagrams for internal energy of a classical spin system at high temperatures. 

symmetry operations is designated by the straight line. The first diagram 
yields 

dq o 
U '~'= --Vo (--~)u,sJq(Jq/2) E A~ (3.7) 

where ,sJq and Jq/2 correspond to inner and outer lines, the integral is 
carried out over d-dimensional Brillouin zone, and Vo is the unit cell 
volume. For hypercubic lattices Vo = a d, i.e., Vo = 1 for a = 1. Then, dividing 
(3.7) by U(0)= -,lo/2 and adopting flJq = (D/O)2q in (3,7), one gets the 
corresponding contribution to the normalized energy U, 

0~1 D ( 2 ~ )  a A,,, P,,=Vo f ).~ (3.8) 2 . 

For the linear chain 2q=cos(q) and P2= 1/2; for the square lattice 
2q = �89 and P2 = 1/4. Generally, for the n.n. interaction 
P2 = 1/z--this result is obvious if one calculates Pz as a lattice sum. The 
cumulant A~, in (3.8) is calculated with the use of (3.4), (3.5), and (2.7) for 

=0;  the obvious result is A , , =  1/D. Thus, Ol~l= 1/(zO). The higher-order 
contributions to &" are calculated similarly. The sum of two equivalent 
diagrams 2 and 3 is given by 

~.,2'+ 3,_ 2 (D'~ 3 2 
-~.. \-ff j P~ ~ A=~,ApaA=tja= Z203 (3.9) 

all 

In (3.9) the sum over ~,,8 is calculated with the use of (3.4) [for ~ = 0  
the four-spin cumulant A=tja=B,(O)(l+26~,a)]; the factor 2! in the 
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denominator  is the number of the symmetry group elements n~. of the 
diagrams connected with the equivalence of the interaction lines of the lateral 
"double-legged" fragments. The fourth diagram in Fig. 1 gives 

D~"= e~ y~/ l~  = ~ (3.1o) 

where P4 = 3/8 for the linear chain and P4 = 9/64 for the square lattice. 
Finally, the contribution of the fifth diagram in Fig. 1 reads 

(~ I' 1 1 2 ,  A,,t~/~ .~..6~+-~..(1-6~,/j) = 2_303 (3.11) U(5)= ..~_ p(4) )-~ 2 
~ D + .~ 

where pt41 is the three-loop integral: 

(2~) " " z 
(3.12) 

(the value of this integral is evident in the coordinate representation). The 
combination in the square brackets in (3.11) is due to the fact that for ct = fl 
there are three identical inner interaction lines, and for ct :~/3 there are two 
of them. The resulting high-temperature series for 0 (up to the fifth order 
in 1/05 ) for the square lattice model is 

1 1 D + 4  1 1 D 2 + 3 D - 1 2  1 
D = ~-~ + ~--~ D + 2 03 256(D+2)(D+4)05+... (3.13) 

[cf. (2.12)]. For  the zero Fourier  component  of the spin-spin correlation 
function So = 0~o of the square lattice ferromagnet similar calculations yield 

1 3 4 D + 9  1 1 9 D + 5 0  1 
So=  1 +-~+-~5+ 8(O+ 2)O3 + 64(O+ 2)O 4 

20D 2 + 147D + 284 1 
-t 1 2 8 ( D + 2 ) ( D + 4 )  0 s t- . . .  (3.14) 

[cf. (2.13)]. It should be noted that one need not, however, consider the 
diagrammatic representations for both U and S. It is more convenient to 
calculate the diagrams for the wavevector-dependent correlator Sq and then 
to obtain energy with the help of the formula 

1 dq 
U= --~ Vo l SqJq (3.15) 
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In addition to the properties described above, the diagram technique 
for classical spin systems possesses such a feature as the possibility of the 
renormalization of interaction lines and blocks, which allows one to 
perform extensive diagram summations. This will be demonstrated in the 
next two sections. 

4. T H E  S E L F - C O N S I S T E N T  G A U S S I A N  A P P R O X I M A T I O N  

The simplest infinite series of diagrams that can be summed up in the 
spin diagram technique is the "tree" series comprising all diagrams with no 
closed loops with integration over wavevectorsJ ~9~ Taking into account 
only tree diagrams results in the mean-field approximation. For one- and 
two-dimensional magnets having no long-range order these diagrams, 
being proportional to powers of magnetization ( rn ' ) ,  are equal to zero. 
The next class of diagrams (which was summed up for the Ising model in 
ref. 19) takes into account only pair correlations of the molecular field 
acting on a given spin from its neighbors, which results in the Gaussian 
statistics of the molecular field fluctuations. In ref. 13 the self-consistent 
approximation for classical Heisenberg models based on a Gaussian set 
of diagrams was proposed, which proved to be very efficient in three 
dimensions. For the Ising model such an approximation was exploited 
earlier in refs. 21-23. 

The reduced version of the SCGA for systems without long-range 
order is represented in Fig. 2. The analytical form of these diagram 
equations reads 

[ o 1 ( 02"~,,, 1 
,4 , ,=exp ~=,n---~.\l-~,] jA( r  

1 
= xo/2 f d~ exp( - r  2) A,,(211/Zr) (4.1) 

and 
1 r dq jLJq 

1 = ~ Vo j (4.2) 
(2X) d 1 -- .71==flJq 

These are the system of nonlinear equations for the cumulant spin average 
,4,, renormalized by Gaussian fluctuations and the dispersion of these 
fluctuations (normalized by temperature) /. With the use of the explicit 
form of A~, from (3.4) and taking advantage of the symmetry, one can 
simplify the D-dimensional integral (4.1) to 

2 f: A~=- Dl u2 F(D/2) dr r ~ e x p ( - r  2) B(2l t/2r) (4.3) 
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Fig. 2. The self-consistent Gaussian approximation (SCGA) for classical magnets: [a) the 
block summation for the cumulant one-site two-spin average , ~ ;  (b) the Dyson equation for 
the renormalized interaction. 

It is convenient to introduce a dimensionless quantity G = (D/O)71~ [see 
(2.10) for 0] and to rewrite (4.2) as 

I=-~[P(G)-I];D J (4.4) p(G)=vo( dq 1 
(2~) a 1 -- G~.q 

For the square lattice with the n.n. interaction P(G)= (2/7t)K(k), k = G, 
K(k) is the elliptic integral of the first kind, and for the linear chain 
P(G) = 1/(1 - G2) 1/2 

Generally, the quantities of interest, the normalized internal energy ~" 
and the wavevector-dependent susceptibility of a ferromagnet ;~k, can be 
expressed as functions of the compact (irreducible) part of the two-spin 
correlation function ,~,,(q) comprising the diagrams that cannot be cut by 
one interaction line: 

( dq 1 ) D 
U=O Oof(27~)dl_dq), q 1 ; (~q=-0-A~a(q) (4.5) 

and 

(•k 
~k (4.6) 
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The susceptibility of an antiferromagnet is given by ~ F  = Zh- k, where b is 
the inverse lattice vector [for the square lattice b = (n, n)]. It is seen that 
the quantity A~,(q) is analogous to the self-energy part in other diagram 
techniques. In the SCGA the quantity G is independent of wavevector, and 
G ~ 1 at T---, 0, ensuring the divergence of ferromagnetic susceptibility Zo. 
Since 2b = - 1 ,  in the SCGA the antiferromagnetic susceptibility ~e tends to 
the classical transverse value 1/2 at T ~ 0  instead of the  proper value 
(1 /2 ) (1 -  1/D). To obtain the latter, one should take into account some 
additional diagrams of the order of 1/D giving rise to the wavevector 
dependence of/ i ,~.  

Before going beyond the SCGA, let us consider its properties in the 
case D >> 1. For large D the product r ~ e x p ( - r  2) in the integrand of (4.3) 
becomes sharply peaked at r=ro=(D/2)  I/2 and the integral can be 
evaluated by the pass method. In the first order in I/D the result reads 

D ~  2 1 
G = -~ A,~ ~- ~ f(xo) + -~ ,J(xo) + ... (4.7) 

where x o = 2(21o) 1/2, lo - l/D, f ( x )  is given by (2.8), and 

1 [ 4xo ,-2, ,7 
A(xo) = ~ _ --f(xo) + xof '(xo) + Xof"(Xo) + ~ J lXo~J (4.8) 

In the limit D ~ ov the A term in (4.7) can be dropped, and the system of 
equations (4.7) and (4.4) after the elimination of I reduces to the equation 
for the quantity G in the spherical limit 

OGP(G) = 1 (4.9) 

It is seen that G(O) monotonously decreases; G(0)= 1. For the linear chain 
(4.9t can be solved analytically to yield G = 1/(1 + 02) I/2. 

The lID correction to the quantity G due to the A term in (4.7) can 
be calculated perturbatively. For 6G determined by G~scGm=G+6G/D 
[henceforth G means the solution of (4.9)] one gets 

2 P -  1 2 ( P -  1 )3 

6G GP' + 0 P ( 2 P -  1)2 (GP' + P) 
~/ I  = - -  (4.10) 

where P =  P(G) and P ' =  dP/dG. 
To end this-section we consider the high- and low-temperature 

behavior of the quantities G, 6G, P, and P', which will be needed subse- 
.quently. At high temperatures (0 >> 1) the solution of (4.9) gives [see (3.8) 
for P,,] 

G ~- O-J --  P 2 0  - 3  -4- (3P~ - P4) 0 - 5  q" O(0 -7) (4.11 ) 
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which is sufficient for the determination of P to the order 0-6: 

P = 1 + ezo-2 + (P4 - 2P~) 0 -4 --]- (e6 - -  6PzP4 + 7P 3) 0-6  + O(0-8)  

(4.12) 

Now one can calculate energy 0 =  O(P- 1) to the order 0 -5. In particular, 
for the square lattice with n.n. interaction P2= 1/4, P4=9/64,  and 
P6=25/256, hence P4-2P~=I/64,  P6-6P2P4+7P3z=-l/256,  and 
the D ~  limit of the expansion (3.13) is recovered. As 
P'~_2PzO-I+O(O-3), the quantity 6G of (4.10) is very small at high 
temperatures: 6G ~- -2P~O - 7 + 0(0-8). 

In the low-temperature region we focus our attention on the two- 
dimensional case, where the quantity G is exponentially close to unity. For 
the n.n. square lattice [see (4.4)] 

P ( G ) ~ - - I n  
--7[ 

1 - G , ~  1 (4.13)  

and G itself found from (4.9) reads 

G ~  1 - 8 . exp( -7 [ /0 )  (4.14) 

Now the quantities P and P'  are given by 

' ( ( o ) )  1 1  l - - -~ - -  exp P~-~+O exp ; ~ n l - G - 8 7 [  

and the 1/D correction 6G, (4.10), reads 

fiG" - 2 0 P  ----7 (1 -0 /2 )2=P ' 1_- + 1 +O(0 )  

(o) 

(4.16) 

5. T H E  1/D E X P A N S I O N  

As we have seen in the preceding section, the self-consistent Gaussian 
approximation yields the exact results for the spherical model in the limit 
D ~  oo. This means that all other diagrams except those taken into 
account in Fig. 2 are small for D >> 1. Our task in this section is to choose 
among them the diagrams whose leading terms are of the order of I/D. For 
the estimation of diagrams in the case D >> 1 it is convenient to use the 
scaled variables x = 2~/D [see (2.6)-(2.8)] and 0 = T/TIMFT~= TD/Jo [see 
(2.10)], whose characteristic values are of order unity. Now it is seen that 
each inner interaction line gives the factor D: flJq=(D/O)2q, and the 
cumulant spin averages determined by (3.3) are proportional to 

A=,= 2 ..... ocD 1 - "  (5.1) 
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The estimate (5.1) shows that for D~> 1 the unification of two smaller 
blocks into one larger one gives an additional factor 1/D. Indeed, 

whereas 

Aal~2...~ .A~.+~...a.+mOCD 2 m - n  

h ~ l ~ 2 . . . ~ , . + n  OC ~)1 -- m- -  n 

The third source of D dependence of diagrams is the summation over spin 
vector components. For D ~> 1 each summation yields the factor D in the 
leading order, which corresponds to the combinations of component 
indices maximally different from each other. In particular, in the summa- 
tion over ct, fl in (3.9) the contribution of the terms with A . . . .  (0) = 3B,(0) 
is of order D, whereas that of the terms A~p/j(0) = B~(0) is of order D 2. 

For an illustration, consider the D dependences of the HTSE 
contributions to energy calculated in the preceding section. These are 
~'r D.  ( l /D) 2.D ocl (one inner interaction line, two blocks A~, and 
one summation over ct), 0 ~2 + 31 oc D 3.  ( l / D )  2 �9 (1/03) . D 2 oc 1 (three inner 
interaction lines, two blocks A~, one block A~aa, and two summations), 
U(4) OC D 3.  ( l /D) 4. D oc 1 (three inner interaction lines, four blocks A~,  
and one summation), and ~'~5~oc D '3. (I/D3) 2- D2oc lID (three inner inter- 
action lines, two blocks A~aa, and two summations). Note that the 
diagram 5 in Fig. 1 having larger spin blocks is of a combined smallness 
bearing two additional small factors, lID and l/z, in comparison with 
other diagrams in Fig. 1. This is a general feature making the lID expan- 
sion developed here and the " l /z  approximation" (SCGA) developed 
earlier r strongly connected with each other. 

Now, the additional set of diagrams for the compact part ,4~ of the 
leading order 1/D chosen with the help of the estimation method given 
above is represented in Fig. 3. Keepling only the lowest order terms in 1/D, 
one can write down the analytical expressions for the four contributions 
to .4 ~ : 

l 
A,,,'~"--~ " (2n) 

,~r 1 ~3 f dq 

(5.2) 
"~31_ 1 ~ ~ dq 

"(4) 2~otflfll)O l dq f l l k - q  
q 
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Fig. 3. (a) The additional diagrams of the order of 1/D for the compact part/1,, of the spin 
correlation function (nfftn :~); (b) the ladder equation for the four-spin correlation line. 

In (5.2) .,],, = OG/D, the quanti ty G is given by the solution of (4.9), 

D dp flJp /~Jq 
Zq=~Vol -p 

(2r0 a 1 - ..~=/3Jp 1 - , ~ f l J q  _ p 

Aq = Dvo I dP ( flJP ~ 2 flJ' - P 
(5.3) 

and ~'q = VqLq = Vq/(1 - ' ] ~ m ~  Vq). The factors D in (5.3) are the results of  
summat ion  over spin vector components .  The four- and six-spin cumulants  
,4~aa and .,t~aa~,r (0t ~fl~),) are given by formulas analogous to (4.1). In 
the leading order in lID only the first terms of the expressions (3.4) should 
be taken into account. Calculating the Gauss ian  integrals by the pass 
method in the lowest order in l/D, one gets 

d x :  x l  ....... o 
(5.4) 
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wheref(x)  and Xo are given by (2.8) and (4.7). With the use of the explicit 
form Xo=2{P(G)[P(G) - 1]} 1/2 the quantities "]==t~a and "]==m~.~. can be 
expressed as functions of G: 

( 2 ; , _  
" 4 ~  = - (2P) 2 ( 2 P -  1 )' A~I~I~';' ~- D (2P) 3 ( 2 P -  1 )3 (5.5) 

To get the expressions for energy C' and susceptibility )~k in the first 
order in 1/D, one should represent the quantity Gk in (4.5) and (4.6) as 

0 2 4 

dk  = a ...1_ .~__/[ak ; ziak=oa.~_ Y ~ ~(i) A~,,(k) (5.6) 
i=1 

[6G is given by (4.10)] and expand the expressions (4.5) and (4.6) in the 
first order in ziG. For energy one thus gets 

1 
U= Uo + ~  ZID (5.7) 

where Uo = O(P-1)= I /G-O is the normalized energy in the spherical 
limit and 

dq 2q3Gq zio=Ovo I t5.81 

The result for the susceptibility reads 

G 1 3Gk ~ -  
1 -- G 2 - ~  -t D (1 - G),k) 2 

(5.9) 

Further, collecting all terms of (5.2) into AGk, (5.6), and making some 
rearrangements, one gets 

where 

ziGk = AGo + Mk (5.10) 

2G f dq 2G 
AGo GP' +-~ Vo j (2~) d rq(1 - G2q) 

j _ _ L _  2 Gp,+pVof  J dq 1 arq + 
(2rt) d rq OG 

P'= OP/OG, P(G) is given by (4.4), 

(5.11) 

f dp 1 1 
rq = Vo j (2rt)d ( l - G 2 p ) ( l - G 2 q  p) 

(5.12) 
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and 

Mk=2G2vo f dq 1 ~'q--~'q k 
(2rc)a rq ( 1 -  G~-~q ~i ~-~-GJ.q _ k) (5.13) 

At zero wavevector (k - -0 )  the quantity M k vanishes, and in (5.10) 
AGk=AGo. The results analogous to (5.9)-(5.13) were obtained by a 
different method in refs. 14 and 15. With the concrete form of dGk the 
expression (5.8) for A~" simplifies to 

2P' 1 Vo f dq 1 63rq (5.14) 0 
P(GP' + P) GP' + P J (2rt) a rq OG 

Before further processing of the formulas obtained, note that the 
analytical structure of the lID approximation for two-dimensional classical 
magnets, characterized by the repeated integrations over the Brillouin zone, 
is much more complicated than that of the one-loop theories, ~8'~~ and it 
requires some work to produce low-temperature expansions of physical 
quantities and to rearrange the formulas obtained to the form convenient 
for numerical analysis. The details of calculation will be given in the next 
sections. Now we make some comments on the general analytical structure 
of the lID approximation. As is known, in one- and two-dimensional 
magnets with continuous symmetry long-range order is "'washed out" by 
long-wavelength magnons, which reveals itself in the divergence of the one- 
loop integral of the type (4.2) at T <  T,., if one starts from the mean-field 
approximation. In three-dimensional systems ~3~ this integral determines 
the spin-wave correction to magnetization. In low-dimensional case this 
divergence is removed at any T:/:0 by the gap in the magnon spectrum. At 
T--* 0 this gap goes to zero with the quantity 1 - G ,  and the integral 1 of 
(4.2) goes to infinity. The question is how to reconcile this divergence with 
the finiteness of most thermodynamic quantities of low-dimensional 
magnets at T - , 0 ,  which must hold in each order in lID. This question is 
solved differently in Takahashi's modified spin wave theory cs~ and in the 
self-consistent Gaussian approximation. In Takahashi's theory the con- 
straint is imposed by hand that the total magnetization, i.e., the ground- 
state value minus the spin-wave correction, be zero. In the SCGA all 
powers of the divergent one-loop integral l are summed up, which ensures 
finiteness of energy and antiferromagnetic susceptibility at T--* 0 and yields 
exact results in the spherical limit D --* ~ .  In the lID approximation there 
is no analog of the Gaussian diagram series (the further terms of such 
series would be of higher orders in 1/D), and two-loop integrals diverge 
even stronger than the one-loop integral l at T--, 0. This divergence is 
restrained by the ladder diagram sequence for the four-spin correlation line 
(see Fig. 3b). 
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6. INTERNAL ENERGY AND A N T I F E R R O M A G N E T I C  
SUSCEPTIBILITY 

In this section the expressions for physical quantities of two-dimen- 
sional magnets more convenient for numerical calculations and low- 
temperature expansion will be worked out. First, the function rq of (5.14), 
which plays a major role in the theory, is divergent at low temperatures 
(G ~ 1 ) and q ~ 0. In the long-wavelength region (x  = q2/4 ~ 1 ) rq is given 
by 

f~~ ; x , ~ c ;  c - l - G ~ , l  
7[C 

rq-~ I n ( X )  ", x>>c; I n ( ! )  ''rt=0 
(6.1) 

(the expression for rq in the general case x ~  c is given in Appendix C). 
For convenience of the evaluation of the integrals in (5.11) and (5.14) we 
introduce a less singular function @q determined by 

1 t" dp ~.q-- G2p2q_ p 1 
~bq = ~ Vo J (2n)a (1 - G2-~  i- -----G~q _p) - G 2 [ 2P - 1 - (1 - G2q) rq ] 

,n(8) 1; 

(6.2) 

(6.3) 

In the region x,~ 1 

i.e., ~Oq is only logarithmically divergent at small x and is not large at x ~ 1 
[cf. (6.1)-I. At low temperatures the "staggered" value of qJq is given by 
q;b = --1 + O(C). NOW with the use of (6.2) one gets 

1 -a~Oq (6.4) rq = ( 2 P -  1) 1 - G2q 

and 

1 arq 2 2q 2 ( G P ' - 2 P + I )  1 a O~,q 
-I - -  + (6.5) 

rq OG G 1 - G2q G ( 2 P -  1) 1 - a~bq 1 - a~bq OG 

where 

6 2 
a = - -  (6.6) 

2 P -  1 
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In (6.5) the term with P', which is exponentially large at small tem- 
peratures ['see (4.15)], contains the main contributions to the integral 
(5.12) coming from the regions p ~ 0  and p~q .  In the long-wavelength 
region (see Appendix C) 

f '2 OOq= x ,~  c 

k -  ~--s In +--;nx x,>c 

(6.7) 

i.e., the derivative 63~q/63G behaves similarly to rq, (6.1). With the use of 
(6.4) and (6.5) the expression for AGo, (5.11), can be put into the form 

G(P+  3) 2G 3 P -  1 G 2 
A G o - - -  - - 1 1  - -  I, (6.8) 

GP' + P GP' + P 2 P - 1  GP' + P - 

where 

dq 1 ~" dq a 0~bq 
I, =vo j (2n)al_a~--~; 1 , = %  (6.9) 

J (2n)" ~ OG - 1 

Now it is explicitly seen that JGo is exponentially small at low tem- 
peratures, as it should be. For the lID correction to energy (5.14) one gets 

A C I = 2 G P ' - P ( P + I )  2 a G P ' - 2 P + I  1 I, (6.10) 
GP(GP' + P) - G 3 GP' + P I~ -t- GP' +-~ - 

For the calculation of antiferromagnetic susceptibility Z~ v = )~b the quantity 
Mb, (5.13), is needed. Taking into account the identity 2b_ q= --2q, one 
can transform Mb to 

f dq 1 2q 
Mb 4avo (6.1 I ) 

J (2n) a 1 - a~,q I + G2q 

Here at low temperature (G--* 1) the integrand diverges at q--* b. Since 
~'b = --1 +O(1- -G) ,  it is convenient to break up (6.11) into two parts: 
Mb = M~,m+ M~ II, where [see (6.6)] 

4a (' dq 2q 4 G ( P -  1) 
U 0 J M~~ l + a  (2n )a l+G2q  2 P - I + G  2 (6.12) 

and 

4aG'- r dq l + ~q 2q 
M ~ I ~ - 2 P _ l + G 2 1 3 ;  I 3 = v o J ( 2 n ) a l _ a O q l + G 2  q (6.13) 
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The expressions (6.10)-(6.13) are convenient for both numerical 
calculation and low-temperature expansion of the internal energy and 
antiferromagnetic susceptibility of two-dimensional magnets. For the 
internal energy (6.10) at low temperatures, omitting exponentially small 
terms, with the help of (4.15), one gets 

ACl= 20-  2aI~ (6.14) 

t! Since at 0,~1 the quantity a~(O/2)/(1-0/2),~1 and q/q are integrable 
functions [see (6.3)], one can expand (6.14) in powers of affq and then 
of 0. As a result one gets [see (5.7)] 

D~-I -  1 -  O - - ~ ( l + W , ) O - - ~ ( l + 2 W , + W 2 ) 0 3 +  ... (6.15) 

where (G ~ 1 ) 

W,=vof(~__ff)a~q=V ~ dpdq 2 p  + q - -  ~.p,,J~q 
(2rr) 2a (1 - 2p)(l - 2q) 

(6.16) 
c dq 2 

W2 = Vo ] (-2n)a ~'q 

The integrals W,, depend on the lattice structure alone and are in some 
sense analogs of the Watson integral for three-dimensional lattices. Note 
that in the low-dimensional case two integrations are needed to ensure 
convergence of lattice integrals. For the square lattice with n.n. interaction 
W] =0  and W2=0.534. The formula (6.15) should be compared with 
(2.10). 

The low-temperature behavior of the antiferromagnetic susceptibility 
in the 1/D approximation [see (5.9)] is determined by the term Mb alone, 
since all other contributions are exponentially small. For Mb one gets 

02 
mb = --2(1 --O)+l_-f-L-~I 3 (6.17) 

which results in the low-temperature expansion 

1 ( 1 )  1 ff'l 2 I,~,'2 ~oAV=~ 1 + 0 +  03+ .-. (6.18) 

where (G ~ 1 ) 

f dq )~q (1 -~l~q) n (6.19) if',, = Vo ( 2 . )  1 + 

"~'~ I-2-20 8 . .  74 
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Fig. 4. The temperature dependence of the normalized internal energy of the linear chain 
classical Heisenberg model; 0 = T/Tt,. MFrs. 
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The temperature dependence of the normalized antiferromagnetic susceptibility 
)~a~= jojCAr of the linear chain classical Heisenberg model. 
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Fig. 6. The temperature dependence of normalized internal energy of the square lattice 
classical Heisenberg model. 
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Fig. 7. The temperature dependence of antiferromagnetic susceptibility of the square lattice 
classical Heisenberg model. The HTSE curve was obtained by the summation of the series for 
1/;~ Ar calculated with the use of the series for ~AF.(5) 
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are the other analogs of the Watson integral. For the square lattice with 
n.n. interaction, ff'l = 0.0935 and if', = 0.470. The formula (6.18) should be 
compared with (2.11 ). 

The numerical results for internal energy (5.9) of the square lattice 
classical Heisenberg model ( D =  3) obtained with the use of the formulas 
of this section and the numerical solution of Eq. (4.9) for the quantity G 
are represented in Figs. 6 and 7. The comparison with the results of the 
other methods (HTSE, 14"5~ MC simulations ~24~ shows that the 1/D 
approximation is fairly reasonable in the whole temperature range. The 
accuracy of the I/D approximation in two dimensions is comparable with 
that in one dimension (cf. Figs. 4 and 5). Useful formulas for numerical 
calculation of ~q are developed in Appendices A and B. 

Apropos  of the results obtained at low temperatures for energy U and 
antiferromagnetic susceptibility :~o Av, it should be noted that both quantities 
are determined by the short-range order. Correspondingly, the formulas 
(6.18) and (6.21) contain integrals determined by the whole Briilouin zone. 
For the long-wavelength quantities such as ferromagnetic susceptibility ;~o 
and spin-spin correlation function Sk the situation is more subtle, and 
nontrivial long-wavelength integrals appear in the calculations. This is the 
subject of the next section. 

7. FERROMAGNETIC SUSCEPTIBILITY A N D  SPIN-SPIN 
CORRELATION FUNCTION 

For the calculation of the ferromagnetic susceptibility Zo of two- 
dimensional classical magnets at low temperatures one has to consider the 
exponentially small I/D corrections to the quantity G in (5.6). It is seen 
already from (4.16) that the lID expansion for the ferromagnetic suscep- 
tibility is not homogeneous and fails in the vicinity of the singularity point 
0 = 0 ,  where 1/(DO)>I. Nevertheless, as we will see below, the 
inhomogeneity of the I/D expansion does not impede the determination of 
the true form of singular quantities at 0,~ 1. 

Taking into account that in (6.8) P ~  1/0 and I~ = 1 + O(0), one gets 

~ 1 F1 +O(0) ]  
AGo = ~71_~ - 12 (7.1) 

The integral 12 can be represented as 12 = 12o 4-Iz~, where 

dq dq a 2 
I2o = avo (2~z)d ~G q; I 2 ' = V O I ( a r c ) d l - - - a ~  q - -  d 

~q,q 
OG 

(7.2) 
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The integral Izo can be calculated with the use of (6.2). In the low- 
temperature range, neglecting exponentially small terms, one gets 

3 1 3 1 
"" - - +  O ( 0 )  ( 7 . 3 )  I2o=a-~ [(1-G)(P-1)2] ~- ~+-~+ 

[see (4.15)]. The integral 13, is more complicated and it is calculated in 
Appendix C. Here we note that because of the factor a 2 ~: 02 in (7.2) the 
contribution to 12, from the main part of the Brillouin zone (q ~ 1 ), where 
O~,q/OG ~ 1/0, is O(0) and may be neglected. Thus, for the calculation of 12, 
the long-wavelength form of ~Oq can be used. The result of the calculation 
reads 

1 3 ( 0 ) 1  3 41n(2 ,+7o + 12, ~ - - ~ +  In +4----+~ 7z n O(0) (7.4) 

where )'o = 0.273. Now, adopting (7.3) and (7.4) in (7.1) and inserting AGo 
of (7.1) into (5.6), one gets 

( o ) (  ,co ,  1 - d o ~ 8  exp - 1 - ~ - + ~ l n  ~ + ~ )  (7.5) 

where co = ~ - 2 + in( 16~ 3) + 7o = 7.62. The expression for 1 - Go should be 
adopted in (4.6). The 1/D corrections become high at small 0. This means 
that the actual form of the quantity 1 - Go in our approximation is 

,,6, 

The latter is consistent with the functional form of the result obtained by 
the Monte Carlo renormalization group analysis for arbitrary D, 125~ 

7t D 
~o=C'o03/'~ 2' exp (-~-ff Z-~_ 2 ) 

c~=(1.62-2.68). 10 5 (7.7) 

c~ = (1.41-2.12). 10 -3 

c~ = (7.30-9.08). 10 -3 

It is seen that it is difficult to determine the prefactor c~ in (7.7) by the 1/D 
expansion, which is reflected in the large value of the constant Co in (7.6). 
In the case D = 2 the expression (7.7) goes to infinity, which corresponds 
to the diverging of susceptibility in the temperature range below the 
Berezinsky-Kosterlitz-Thouless transition. 
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The correlation length ~ and the k-dependent spin-spin correlation 
function Sk are determined by the small-k (k,~ 1) behavior of the 
denominator of (4.6): 

I - (~k 2k ~ ! -- (~o + k2/4 -- Mk/D (7.8) 

where l - G o  is given by (7.5) and the expansion 2k~- l - -k2 / z  ( z = 4 )  was 
used. It can be shown that at k ~ 1 and 0,~ 1 the relevant contribution to 
Mk, (5.20), is due to the long-wavelength region q,~ 1. The details of 
calculation are given in Appendix D. The correlation length is determined 
by ~ = • where k = ix is the zero of (7.8). In the spherical approximation 
(D ~ ~ )  x = ~o, Xo = 32 e x p ( -  n/0). In the first order in I/D it is sufficient 
to calculate Mk for k = ko = ixo. As a result one gets 

x 2 -  ~--2= 32 exp - 1 - ~ - ~ + ~  m ~ + - ~ )  (7.9) 

where c~ = co - ln(~) + y, = 7.36, ~, ~ = 0.881 I. This is also consistent with 
the functional form of the result of ref. 25, 

I=c~176 20 D - 2  (7.10) 

c3 =451; c4 = 39.2; c5= 19.0 

but again the prefactor co here cannot be compared with the result of the 
1/D expansion. Thus, one can conclude that the I/D expansion works well 
for calculation of the physical quantities of two-dimensional ferro- and 
antiferromagnets nonsingular at T = 0 ,  such as internal energy and 
antiferromagnetic susceptibility, and that it is less efficient in comparison 
with other methods for the analysis of the singular ones. 

The spin-spin correlation function Sk in the I/D approximation 
proves to be of a non-Ornstein-Zernike form. The calculation of Mk at 
•  1 (the details are given in Appendix D) shows that in the region 
In(k/x) >> 1, i.e., ( 0 / n ) I n ( l / k ) ~  1 (this condition requires larger values of k 
than just k >> x) the wavevector-dependent susceptibility ;~k = Sk/O is given 
by 

,[ +20 
l ~ _ ~  - D  n ~ k - x ,  = I 1 In - 1 -  k 20/"~ (7.11) 

which implies Skoc 1/k'- ", ~ = 20~(riD). The dependences of --ln(k-'~k/4) 
versus In(I/k) for different values of 0 are represented in Fig. 8, It can 
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-IgCk ~ ~/4) 
0.1 

I 

0.05 
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0 

0 1 2 3 
IgC1/k) 

Fig. 8. The non-Ornstein-Zcrnikc behavior of thc spin-spin corrclation function Sk = 0)~k 
of the square-lattice classical Heisenberg model in the I/D approximation; (1) 0=0.1; 
(2) 0 =0.05; (3) 0=0.025. 

be seen that the linear dependence is realized only at sufficiently small 
temperatures and large wavevectors. Note that in the one-dimensional case 
[-see (2.3)] the correlation function has the Ornstein-Zernike form. 

8. D I S C U S S I O N  

In this article the I/D expansion for classical spin systems on a lattice 
has been developed and applied to two-dimensional Heisenberg ferro- and 
antiferromagnets. It proves that for the quantities nonsingular at T = 0 ,  
such as internal energy and antiferromagnetic susceptibility, the I/D expan- 
sion is uniform for all temperatures and works rather well for D = 3. The 
reason is that the exact results for thermodynamic quantities at T =  0 are 
recovered already in the first order in 1/D and the l/D expansion is con- 
sistent with HTSE at high temperatures. For singular quantities, such 
as ferromagnetic susceptibility and correlation length, the 1/D expansion 
is inhomogeneous at low temperatures, but, nevertheless, it yields the 
asymptotic forms of the singular quantities at 0 ,~ l  [see, e.g., (7.5) and 
(7.6)]. 
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An important feature of the approach proposed here is the corre- 
spondence between the order of the lID expansion and the number of loops 
(i.e., the number of independent integrations over the Brillouin zone) in the 
diagrams taken into account. That is, in the zeroth order in lID (spherical 
or self-consistent Gaussian approximations) all one-loop diagrams are 
taken into account (see Fig. 2) and the approximation of the first order in 
1/D is given by two-loop diagrams (see Fig. 3). It is expected that the three- 
loop approximation of the order lID 2 would be a substantial improvement 
at low temperatures, since it yields, in particular, the exact values of both 
zaV(o) and OXAV/&TI r=o. 

It is interesting to note that using the conjecture that the coefficients 
in the low-temperature expansions of energy and antiferromagnetic suscep- 
tibility are polynomials in lID allows one to determine exactly one addi- 
tional coefficient in each order in 1/D. For example, the coefficients in the 
terms of orders 02 in (6.15) and 0 in (6.18) for the two-dimensional classical 
model become exact only in the second order in 1/D [cf. (2.10) and (2.11 )]. 
Nevertheless, these coefficients can be determined exactly with the use of 
the present O(I/D) results and the additional condition that for D =  1 
(S=  1/2 Ising model) they vanish (there are no powers of temperature in 
the low-temperature expansions, only exponentials). As a result, these 
coefficients acquire additional factors ( 1 -  l/D): 

0-=-1-  1 -  0 - ~ - ~  1 -  ( l +  W,)02+ ... (8.1) 

[recall that for the square lattice W~ =0;  see (6.16)]. 
The fact that at low temperatures the lID expansion yields exact 

results for specific heat and antiferromagnetic susceptibility up to the nth 
order in temperature in the (n + l ) t h  order in I/D can be used for the 
development of the low-temperature expansions of the physical quantities 
of spin systems. However, this way seems to be too indirect and heavy. It 
would be better to obtain the low-temperature expansions directly using 
the small parameter 0,~ 1. But for systems without long-range order the 
situation at 0,~ 1 is not so simple as for three-dimensional ones, and this 
problem requires a special investigation. 

Comparing the present results with those of the other lattice theories 
for low-dimensional magnets, we note that the latter do not go beyond a 
one-loop approach. The most successful of them proposed by Takahashi tS~ 
for the Heisenberg model proves to be rather good at low temperature. 
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For the one-dimensional classical Heisenberg model, neglecting small 
exponentials, Takahashi's theory yields 

2 1 I 
Zo ~ 3  1 - 0 / 3 ;  0,~1 (8.3) O ~  1 - 5 0 ;  -gv 

[cf. (2.10) and (2.11)], which reproduces the exact results (2.1) and (2.2) 
with the accuracy of the order of exp(-3/0).  Comparing this with the lID 
expansion [see (2.10) and (2.11)], we conclude that (8.3) actually contains 
all powers of 1/D and, accordingly, all relevant many-loop diagrams. It 
does not necessarily contradict the one-loop nature of the Takahashi 
theory, since the latter is based on variational, rather than on a pertur- 
bative approach, and in the one-dimensional case all many-loop integrals 
can be calculated analytically giving simple results. In the two-dimensional 
case the situation is different, because already two-loop integrals over the 
Brillouin zone cannot be calculated analytically. For the square-lattice 
classical Heisenberg model, neglecting exponentially small terms, the 
results of the Takahashi approach can be expressed in the form 3 

~ I  ( 4 )1/21 _ 2  0 1 , O'~ 1+ 1 - ~ 0  - 3 0 ~ 1  3 - 5 0 - - 2 0 3  . . . .  (8.4) 

Zo ~ I + [1 - (4 /3 )0 ]1 /2=3  
(8.5) 

These results should be compared with (6.15) and (6.18) for D = 3 [cf. also 
(8.1) and (8.2)]. Whereas the factors 1/9=(1/2D)(1-1/D) in (8.4) and 
(8.5) seem to be correct, in contrast to the factors 1/(2D)= 1/6 in (6.16) 
and (6.18), it seems unlikely that all many-loop integrals over the Brillouin 
zone in all orders in 1/D could fold into simple numbers like 2/27 and 5/81. 
Comparison with the MC simulation results for energy ~24~ (see Fig. 6) 
shows that actually the 1/D expansion is not worse than (8.4) and (8.5) at 
low temperatures and is remarkably good in the whole temperature range. 
It would be very desirable to make such a comparison for antiferromagnetic 
susceptibility. Another interesting task is to generalize the Tkahashi theory 
for arbitrary D and to compare it with the 1/D expansion. 

As for ferromagnetic susceptibility Zo and correlation length ~ in two 
dimensions, the 1/D expansion supports the arbitrary-D RG results (7.7) 
and (7.10) obtained by Fukugita and Oyanagi, ~2sl which for D = 3 take on 
the form (3;o) So -=- 0~o oc 0 4 exp ; ~ ~ 0 exp (8.6) 

3 The low-temperature expansion of the antiferromagnetic susceptibility of the square-lattice 
classical model produced by Takabashi himself seems to be incorrect. 
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as well as similar results by Shenker and Tobochnik (24~ obtained earlier 
for the classical Heisenberg model. On the contrary, the preexponents 
proportional to 0 z and const for So and ~ obtained by Takahashi and some 
other researchers seem to be incorrect. 

An interesting problem, the investigation of which is planned for the 
nearest future, is the calculation of the physical quantities of low- 
dimensional magnets in the presence of a magnetic field. This problem is 
significant for both one- and two-dimensional systems and it cannot be 
handled with such theories as that of ref. 8. The underlying physics is non- 
trivial here, as is reflected by the impermutability of limits T--*0 and 
H--.0. In particular, for the antiferromagnetic susceptibility of bipartite 
lattice systems we have limr~0 limH~o z(H, T) --- 1/(2Jo)-(1 - l/D) and 
l imH_o l imr ,o  z(H, T ) =  1/(2Jo). The general functional form of x(H, T) 
in the lID approximation containing these features can be determined 
regularly in the framework of the method proposed. 

APPENDIX  A. THE FUNCTION ~q FOR A GENERAL LATTICE 

The function q;q, (6.2), is not divergent in the low-temperature limit 
(G ~ l) at q 4: 0, because the numerator of (6.2) compensates for the small 
value of the denominator at p = 0 and p = q. However, the integral (6.2) is 
still inconvenient for the direct numerical calculation since the integrand 
has singularities at p = 0  and p =q. In particular, for p ,~ 1, 2p ~_ 1 -  O(p 2) 
and ~p_q'~2q--llqp--O(p2), where p.q=02q/~q; thus the integrand 
behaves as pqp/p2. This singularity gives zero contribution to the integral, 
but it can spoil numerical results. To remedy this drawback, we make some 
identical transformations of (6.2) to get a nonsingular integrand. First, 
(6.2) can be written as 

1 dp )~q-GJ.p2q_p ( 1 1 / (A.1) 
~ b q = G v ~  l - G 2 ~ + l - G 2 q _ p ,  

Since the two parts of (A.I) give the same contribution to ~0q, one can drop 
the second term in the square brackets and multiply the first one by 2. 
Then the integrand can be symmetrized with respect to the change of the 
sign of p: 

1 Vo f dp 1 F 2q--G~.pJ.q P "k J'q~G)'pJ'q+E '] q,. 
J ( 2 . )  1 - 1_2 - 6( p + 2 - c( p + + , ) j  

(A.2) 

Here the integrand is well behaved at p=0 ,  and (A.2) is convenient for 
computations. 
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A P P E N D I X  B. THE  F U N C T I O N  ~q FOR THE S Q U A R E  LATTICE 

For  the square lattice with the nearest neighbor interaction 
2k = �89 kx + cos k.,,), and in the expression for the function ~q, (6.2), one 
can perform one of the integrations over Px, P,. analytically. In fact, it is 
more convenient to calculate the function rq, (5.12), first, and then to 
determine qJq from (6.2). For  rq with the use of formula (1.5.9.32) of ref. 26 
one gets 

fTt dp v 
rq = - , -~n Q(PY' q) 

1 [ a + _ s a _  cos(q,.) . a_  - a +  cos(qx)]  

Q=NI_ (a-'-g-~ ~ +  i~++~g2)"2 J 

= (a + -- a _ )z + ( 1 -- cos qx)[2a +a_ -- gZ( 1 + cos qx)] 

a+_ = 1 --g.cos(p,.+q.,./2); g=G/2  

(B.1) 

It can be seen that in the low-temperature limit (G--* !, g--* 1/2) both 
terms of Q, (B.1), are divergent at q ~ 0, whereas Q itself remains finite for 
p.~. 4: 0. To put it into explicit form, we transform the expression for Q to 

1 - cos(qx) (~_~_+ ~__~_ ) l ( a + - a _ ) Z ( a + + a _ )  (B.2) 
Q= ~ + + ~  S+S (S+ + S_)  

where S+_ = (a~ _g2)~/2. At low temperature the function Q is singular at 
P.v = +__qy/2, which hampers the numerical integration over py. Thus, it is 
more convenient to write down the quadrature  for ffq directly, which with 
the use of the identity 

['- dp v 1 
~ P~ a ~ 

J 

can be transformed to the final form 

.ap,,[ i + 1 ] 
(B.3) 

In the limit T ~ 0  the integrand of (B.3) becomes discontinuous (but 
not divergent) at p,.=q,./2. This must be taken into account in the 
computat ion of ffq. 
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APPENDIX C. LONG-WAVELENGTH INTEGRALS FOR 
FERROMAGNETIC SUSCEPTIBILITY 

The function rq, (5.12), in the long-wavelength (x=q'-/4,~ 1), low- 
temperature ( 1 - G , ~  1) region can be calculated analytically in a 
straightforward manner. For the square lattice the result reads 

2 
rq --~-- ?(y); y = x/c; 

1 1 [ 
?(Y)=2 [y(y+4)] '~2In 1+ 

c = - l - G ~ l  (C.1) 

[ y ( y + 4 ) ]  ~/2 {y+2+2 [Y(Y+4)]~/2}] 

It is seen that ~(0) = 1/2 and ~(y) _-__ ln(y)/y for y ,> 1 [cf. (6.1)]. Then, with 
the same assumptions, the derivative O~Oq/OG can be calculated with the 
help of (6.2) and (C.1) to yield 

OG - crt " y + 4 " 
(c.2) 

v(y)=  3 [Y(Y+4)]~/2 (2yZ+7y+4)+2y3+ l l y 2 +  14y+2  
( ( y+4){ [y ( y+4) ] ' / 2+y+I}  ) 

{[y(y+4)] ' /2(y+ 2)+ y2 +4y+ 2} 

The limiting forms of v(y) are v(0) = 3/4 and v(y) ~ 3/y for y >> 1 [cf. (6.7)]. 
Now we proceed to the calculation of the integral Iz~, (7.2). The 

relevant terms of 12~, i.e., those O(1/0) and O(1), are determined by the 
long-wavelength region. However, one cannot simply extend the integra- 
tion in (7.2) to infinity, since in this case the integral will diverge at the 
upper bound. Thus, we express in (7.2) ~bq through rq with the use of (6.2) 
and write 

fdq[ G2 ] ~ q  
/21=1)0 ~ rq(l--G)~q) a t?G 

~1 [A/, . 1 2a-]I- , _ y - 2 ~ ( y ) ]  

=;.o (C.3) 

where the upper bound corresponds t o  q 2  ~ x --- A ,~ 1. Then we break up 
I_,~ into two parts: I_,L = 12~o+ I,_~, where 

l f m ,  I f m ,  
12to = - dyfo(y); I,,, = -  d y [ f ( y ) -  fo(y)]  (C.4) 

7[ '~0 - ~ *'0 
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f(y) is the integrand of (C.3) and fo(Y)is its asymptotic form in the range 
y>> 1. We use [see (C.1) and (C.4)] 

1 
(c.5) 

where the parameter p > 1 is adopted to ensure the convergence of 121o at 
the lower bound y = 0. Evaluation of 121o with the use of a ~ (0/2)/(1 - 0/2) 
[see (6.6)] and ln(8/c)~ rt/0 [see (4.13) and (4.15)] yields 

1 3 ( ; )  3 l _ 3 1 n l n ( p ) + l  
I21o=-~--0+ In - n + 4  rt rc ln(p)+O(O) (C.6) 

Now, since the difference f (Y)- fo(Y)  in I21~, (C.4), rapidly diminishes 
with the increasing of y, the integral I2j~ is determined by the region y ~ 1 
( x ~ c ) ,  and the upper bound in I2~ may be set to infinity. Neglecting the 
terms with a which are O(0), one gets 

4 I2,, = - l n ( 2 ) 1  In(p) +-3 in In(p) + 7 o +  0(0) (c.7) 

where 

f f [ v ( y )  3 ]=0 .273  (C.8) t,o = - 3 1 n l n ( p ) +  dy ( y + l ) ? ( y )  (y+p)ln(y+p)  

It is obvious that 70 is independent of p. The resultant expression for I2~ is 
given by (7.4). 

APPENDIX D. LONG-WAVELENGTH INTEGRALS FOR THE 
SPIN-SPIN CORRELATION FUNCTION 

In this Appendix the long-wavelength form of the quantity Mk 
(xk=k2/4~ 1) in the low-temperature region will be developed. Since 
rq~ 1/0 for q ~  1 [see (6.1)], the main part of the Brillouin zone yields a 
small contribution to Mk, (5.13), being of the order of a~O,~ 1. Thus, in 
the calculation of Mk one can use the long-wavelength approximation: 

2 fot I(x, Xk) k 2 A/,. l(y, Yk) 
- -  - d y  (D.I)  M~_~ - - ~ _  dXrq(x+c) 4 Io ( y + l ) ? ( y )  

where A ~ 1, ?(y) is given by (C.1), Yk = XJC = k2/(4c), and I is the average 
with respect to the angle of the vector q: 
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_ I 12~ 2q--2q_k 
I(x, Xk)--~-~ o d~Oq i~-q_ ~ yk'[(y, Yk) 

[ l+y ] _ 1  - 1 +  
7(y, ) % ) - y ,  [(1 + y+ yk)2--4yyk] '/2 

For small k (Yk '~ 1, i.e., k ,~ I / l)  

"[(Y, Yk) y -  1 

(D.2) 

y Z - 4 y +  1 
( y + l ) , - t  ( y + l ) 4  Yk+O(Y-k) (D.3) 

The integral (D.1) can be treated with the same method that was applied 
to 12t in Appendix C. Using the asymptotic form 7~ l/(y + p), one gets 

] Mk ~ ---~ (D.4) 

f(yk)=lnln(p)+i~-~dy[ 1 7(y, yk) ] 
(Y+p)In(y+P) (Y + l i~ 'Y i J  (D.5) 

where 

and p > 1. For the calculation of the correlation length ~ = • ~ in the first 
order in lID it is sufficient to calculate Mk for k = ko= iuo (Xo =4c), i.e., 
for Yk = --1. This should be done carefully, since I(y, - 1 )  is divergent at 
y = 0. So, we write f (  - 1 ) = fo + f t ,  where 

fo=2fo~-'dy[ ly+p - I ( y , -  I)3 = 2 1 2 -  In(p)] 

I ' -l(y,-l)  (y+l)?(y) 

(D.6) 

(D.7) 

and 

has a well-behaved integrand [~(0)= 1/2]. As a result of computations one 
gets f ( - 1 ) = 0 .8811 .  For a comparison, the small-k expansion of f 
calculated with the use of (D.3) yields f(yk)-~f(O)(l+ctyk) with 
f(0)--0.8875 and ct=0.006983, which gives 0.8813 for yk=--1. Now, 
adopting M for k = iuo in (7.8), one obtains the formula (7.9) for correla- 
tion length in the lID approximation. 
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For the calculation of spin-spin correlation function Sk for k >> u, we 
should investigate the behavior of the function f(Yk), (D.5), for y,~> 1. 
It turns out that after eliminating small terms of orders 1/yk and l/x//-~k 
from (D.5), f becomes a function of "slow" variable ln (yk)=2  ln(k/uo). 
In the limit Yk >> 1 the function I(y, )'4) simplifies to I 2  70 + 7~, where Io is 

[(Yk - y)2 + 4yk] 1/2 

peaked at y = Yk : 

70- 

and 7~ is a steplike function: 

(D.8) 

77k[ Y-Yk  ] 2  7,= 1 --l+[(),k_),)----'5--~4yk]t/2 ~------O(yk--y)yk (D.9) 

[here O(x) is the step function]. The corrections to (D.8) and (D.9) are of 
the order 1/yzk . It is convenient to integrate out the peak part of the 
integral (D.5) analytically. Since near y--Yk >~ 1 the function ?(y) takes on 
its asymptotic form [see (C.1)], one can break up (D.5) into two parts: 
f = fo + f l ,  where 

l fo~ [ 1 7(y, yk)l 2 - - I n ( p ) ( D . 1 0 )  
fo = ln(y, + p) dy Y +----~- in(yk + p) 

and 

f t=ln ln(p)+fody{y___~p[1  1 ] 
In (y+  p ) l n ( y k + p )  

[ , 
-7(y ,y , )  ( y + l ) ~ ( y )  l n (yk+p)  (D.11) 

In (D.11) the peak of 7 at y =  y ,  is compensated for by the difference in 
square brackets. Thus, the representation (D.10), (D.I1) is convenient for 
the numerical calculation off (yk)  for arbitrary Yk. Note that (D.10), (D.11) 
recovers (D.6), (D.7) if we choose ln(1 - p ) =  1/2, i.e., p = e r a +  1 = 2.6487. 
Such a choice of p guarantees good behavior of the integrand of (D.I 1 ) for 
b o t h y k = - I  a n d y k ~ l .  

For the analytical calculation of the function f(Yk), (D.5), in the limit 
Yk >> 1 it is convenient to represent it in the p-independent form. Replacing 
the upper bound of the integration by A ~ oo, one gets 

f(Yk)=lnln(A)+ ln(yk) + dyBy, y~) in(-yk) ( y + l ) f ( y i  

(D.12) 
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Using the asymptote (y + 1 ) ?(y) ~ In(y) in the relevant region y ,,~ y ,  >> 1 

and the representation of 7 (D.8), (D.9), we can transform expression 
(D.12) to 

2 - 1 n ( A )  
f ( Y k )  ~- In ln(A ) + - -  

ln(yk) 

+ Is dy ( y k l  2'~ l n (y / yk )  

y ys  l n ( y l l n ( y , )  

f A dy l n ( y / yk )  
+ (D.13) 

,,'k Y -- Yk In(y) ln(yk) 

In (D.13) the quantity 4yk entering 70, (D.8), is omitted, since it introduces 

an error of the order 1/x/~y~ to f (yk) .  Then after some transformations, the 
function f ( Y k )  takes on the final form 

2 2 t" l In(z) 
f ( y k ) ' ~ l n  ln (yk )  

+ln (yk )  ln-(yk) 0 1 + ln(z) / ln (yk)  

2 ~ l l d Z  ln2(z). 
(D.14) 

lnS(-y,) :o - z 1 - l n 2 ( z ) / l n 2 ( y k )  

which can be easily expanded in powers of I / ln(yk) .  Now, with the help of 
(4.6), (7.8), and (D.4) for k>>~ we write 

In the case ln(y~)>> 1, using the first two terms of (D.14) and the formula 
ln(yk) _--__ rr/0 -- 2 In(l/k),  one arrives at the formula (7.11 ). 
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